Pentagod: Stepping beyond traditional god with five parties

Aug 2022

Pentagod: Stepping beyond traditional god with five parties

Authors: Koti, N., Kukkala, V. B., Patra, A., & Raj Gopal, B.

Secure multiparty computation (MPC) is increasingly being used to address privacy issues in various applications. The recent work of Alon et al. (CRYPTO’20) identified the shortcomings of traditional MPC and defined a Friends-and-Foes (FaF) security notion to address the same. We showcase the need for FaF security in real-world applications such as dark pools. This subsequently necessitates designing concretely efficient FaF-secure protocols. Towards this, keeping efficiency at the center stage, we design ring-based FaF-secure MPC protocols in the small-party honest-majority setting. Specifically, we provide (1,1)-FaF secure 5 party computation protocols (5PC) that consider one malicious and one semi-honest corruption and constitutes the optimal setting for attaining honest-majority. At the heart of it lies the multiplication protocol that requires a single round of communication with 8 ring elements (amortized). To facilitate having FaF-secure variants for several applications, we design a variety of building blocks optimized for our FaF setting. The practicality of the designed (1,1)-FaF secure 5PC framework is showcased by benchmarking dark pools. In the process, we also improve the efficiency and security of the dark pool protocols over the existing traditionally secure ones. This improvement is witnessed as a gain of up to in throughput compared to the existing ones. Finally, to demonstrate the versatility of our framework, we also benchmark popular deep neural networks.

Journal/Conference

ACM CCS 2022